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What is Programming Language?

A programming language is a vocabulary and set of grammatical rules 
for instructing a computer or computing device to perform specific 
tasks. 

It is a way of communication between Human being and Computer.

Some examples of Programming Languages are:-

C,  C++,  Java,   Python  etc.
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In this Presentation we will discuss about C                  
language.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)



C- Language
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What is C?

C is a programming language developed by AT & T’s Laboratories f USA 
in 1972. It was designed and written by a men named Dennis Ritchie. It 
is use to design an operating system.

C has became popular because it is:-

• Simple

• Reliable

• Easy to use
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Development of C/ History of C
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Similarity between C language and English language
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Features of C language
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Why C is called as Middle Level Language?

C is called middle-level language because it actually binds the 
gap between a machine level language and high-level languages . A 
user can use c language to do System Programming (for writing 
operating system) as well as Application Programming (for generating   
menu driven customer billing system ) .

C Machine-level 
language

High level 
language
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Constant, Variables, Keywords, Instructions,        
Comments

Constant:- Constants in C are the fixed values that 

are used in a program, and its value remains the same during the entire execution of 
the program. Constants are also called literals.

Variables:- A variable is nothing but a name given to a storage area that our 

programs can manipulate.
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Keywords:- Keywords are predefined, reserved words in C language and each 

of which is associated with specific features. These words help us to use the 
functionality of C language. They have special meaning to the compilers. There are 
total 32 keywords in C.

Instructions:- C instructions are the commands in the program that instructs 

the compiler to do certain action.

Comments:- A comment is an explanation or description of the 
source code of the program. It helps a developer explain logic of the code 

and improves program readability. At run-time,a comment is ignored by the 

compiler.
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C-Program

* Format of C- program:-

#directive            

main() 

{                                          

……………….

………………. 

}

Function Name

Starting of program

Program Statement / 
Instructions
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First C- Program:-

#include<stdio.h>

int main()

{

printf("Hello World");

return 0;

}
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Basic terms in C

• Printf() :- Use for printing output on the screen. Example: 

printf("Hello World");

• Scanf():- Use for taking input from the user. Example:-

scanf("%d", &a);

‘&’ is an address operator.

• Data types :- A data type specifies the type of data that a variable can                         
store.  Example:

integer, floating, character, etc.
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• Identifiers :- C identifiers represent the name in the C program, for example, 
variables, functions, arrays, structures, unions, labels, etc. An identifier can be 
composed of letters such as uppercase, lowercase letters, underscore, digits, but the 
starting letter should be either an alphabet or an underscore.

• Variables :- A variable is nothing but a name given to a storage area that our 
programs can manipulate. Each variable in C has a specific type, which determines the 
size and layout of the variable's memory; the range of values that can be stored within 
that memory; and the set of operations that can be applied to the variable.

• Getch() :- It is use to hold output screen after program execution until use 
enter any other key. To use getch() we have to use #include<conio.h> 
header file.
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Operators

Operator:- An operator is a symbol that tells the compiler to perform specific 
mathematical or logical functions. C language is rich in built-in operators.

Types of Operator:-
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Statement :-
Command given to computer to perform a specific task.

Types of statement :-
1. Expression Statement:- Simple statement consists of expression and semi-colon.

2. Compound Statement:- Combination of two or more simple statement connected 
by logic.

3. Control Statement:- Control the flow of statement and decide which statement is 
true or false.
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Types of control statement
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Control Statement
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Decision Making Statement
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If statement

#include<stdio.h>

int main(){

int number=0;

printf("Enter a number:");

scanf("%d",&number);

if(number%2==0){

printf("%d is even number",number);

}

return 0;

}
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If-else Statement
#include <stdio.h>

int main()

{

int age;

printf("Enter your age?");

scanf("%d", &age);

if(age>=18)

{

printf("You are eligible to vote...");

}

else

{

printf("Sorry ... you can't vote");

}

}
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Switch

#include<stdio.h>

int main(){

int number=0;

printf("enter a number:");

scanf("%d", &number);

switch(number){

case 10:

printf("number is equals to 10");

break;

case 50:

printf("number is equal to 50");

break;

case 100:

printf("number is equal to 100");

break;

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;
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Iteration (Loop) Statement
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While loop and do-while loop

While loop

#include<stdio.h>

int main(){

int i=1;

while(i<=10){

printf("%d \n",i);

i++;

}

return 0;

}

Do-while loop
#include<stdio.h>

int main(){

int i=1;

do{

printf("%d \n",i);

i++;

}while(i<=10);

return 0;

}
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For loop

#include<stdio.h>

int main(){

int i=0;

for(i=1;i<=10;i++){

printf("%d \n",i);

}

return 0;

}
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Jump Statement
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goto statement

#include <stdio.h>

int main()

{

int num , I = 1;

printf("Enter the number whose table you want to print?");

scanf("%d", &num);

table:

printf("%d x %d = %d\n“, num , i, num * i);

i++;

if(i<=10)

goto table;

}
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Continue Statement

#include<stdio.h>

void main ()

{

int i = 0;

while(i!=10)

{

printf("%d", i);

continue;

i++;

}

}
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Break Statement

#include<stdio.h>

#include<stdlib.h>

void main ()

{

int i;

for(i = 0; i<10; i++)

{

printf("%d ",i);

if(i == 5)

break;

}

printf("came outside of loop i = %d",i);

}
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Function

A function is a set of statements that together perform a specific task.

Syntax:-

return_type function_name (parameter)

{

body of function;

}
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Steps of writing Function

1. Declaration of function

2. Calling of function

3. Define a function
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Types of Function

1. Library Function:- Library function are those functions which are inbuilt in 
compiler, and user don’t needs to create it. Example:-

sqrt();

2. User define Function:- User define functions are those functions which is 
created by user for according to their requirement, it is not inbuilt in compiler. 
Example:-

char akhilesh();
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Passing Parameter in function can be done in two ways

Call by Value

#include <stdio.h>  

void swap(int , int); 

int main()  

{  

int a = 10;  

int b = 20;   

printf("Before swapping the values in main a = %d, b = %d\n",a,b); 

printf("After swapping values in main a = %d, b = %d\n",a,b); 

void swap (int a, int b)  

{  

int temp;   

temp = a;  

a=b;  

b=temp;  

printf("After swapping values in function a = %d, b = %d\n",a,b);  

} 

Call by Reference

#include<stdio.h>  

void change(int *num) {    

printf("Before adding value inside function num=%d \n",*num);    

(*num) += 100;    

printf("After adding value inside function num=%d \n", *num);    

}      

int main() {    

int x=100;    

printf("Before function call x=%d \n", x);    

change(&x);

printf("After function call x=%d \n", x);    

return 0;  

} 
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Difference between Call by value and Call by reference

Call By Value Call By Reference

Here, actual value of variable are passed. Instead of value reference of memory is 
passed.

Here, value of each variable is copied into 
corresponding another variable.

Here, address of actual parameters is 
copied.

Any change in formal parameter , does 
not reflect in the actual parameter.

If there is any change in parameter it will 
reflect every where.
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Recursion

Recursion is the process of repeating items in a self-similar way. In 
programming languages, if a program allows you to call a function 
inside the same function, then it is called a recursive call of the 
function. The C programming language supports recursion, i.e., a 
function to call itself.
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Example of Recursion Function
#include <stdio.h>  

int fact (int);  

int main()  {  

int n, f;  

printf("Enter the number whose factorial you want to calculate?");  

scanf("%d“ ,&n);  

f = fact(n);  

printf("factorial = %d", f);  

}  

int fact(int n)  {  

if (n==0)  

{  

return 0;  

}  

else if ( n == 1)  {  

return 1;  

}  

else    {  

return n*fact(n-1);  

}  

} 
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Array

An array is defined as the collection of similar type of data items stored 
at contiguous memory locations. Arrays are the derived data type 
in C programming language which can store the primitive type of data 
such as int, char, double, float, etc.
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Types of Array

1. One-Dimension Array

2. Two-Dimension Array
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1. One-Dimension Array 

A one-dimensional array (or single dimension array) is a type of 
linear array. Accessing its elements involves a single subscript which 
can either represent a row or column index.

• Declaration of Array:-

data_type array_name[array_size];
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• Initialization of Array:-

data_type array_name[size] = {list of values};

int num[5] = {1,2,3,4,5}

data_type array_name[ ] = {list of values};

int num[ ] = {1,2,3,4,5}

• Accessing Array Elements:-

Subscript of array starts with 0. 

int mydata[20];    -> total number of array.

mydata[0];            -> first element of array.

mydata[19];           -> last element of array.
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Program of 1-D array
int main(){

int arr[5], i;

for(i = 0; i < 5; i++){

printf("Enter a[%d]: ", i);

scanf("%d", &arr[i]);

} 

printf("\n Printing elements of the array: \n\n");

for(i = 0;  i < 5;  i++){

printf("%d ", arr[i]);

}

return 0;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)



2. Two-Dimension Array

Two-dimensional array can be defined as an array of arrays. The 2D
array is organized as matrices which can be represented as the 
collection of rows and columns.

• Declaration of Array:-

data_type array_name[Row_Size][Column_Size];
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• Initialization of Array:-

data_type array_name[Row_Size][Column_Size];   

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

• Accessing Array Elements:-

An element in a 2-D array is access by using the subscripts, i.e., row index and column      
index.

int value = a[2][3];
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Program of 2-D array

#include<stdio.h>  

int main(){      

int i=0,j=0;    

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};     

for(i=0;i<4;i++){    

for(j=0;j<3;j++){    

printf("arr[%d] [%d] = %d \n",i,j,arr[i][j]);    

}    

}    

return 0;  

} 
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Pointer

The Pointer in C, is a variable that stores address of another variable. A pointer can 
also be used to refer to another pointer function. A pointer can be 
incremented/decremented, i.e., to point to the next/ previous memory location. 
The purpose of pointer is to save memory space and achieve faster execution time.

50 1001

1001 2047
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• Declaration of Pointer Variable:-

data_type *pointer_variable;

int *p;

‘*’ Called asterisk sign. When use with variable name indicates that the 
variable is a pointer variable and it makes a differentiation between an 
ordinary variable and  a pointer variable.

Pointer variable is a variable that holds the address of another variable.
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• Initialization of Pointer:-

Address operator (&) is use to initialize a pointer variable. Example:-

int qty = 175;

int *p;         -> declaration

p = &qty;   -> initialization

Variable Value Address

qty 175 5000

p 5000 5048
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• Indirection Operator:-

The pointer operator, available in C is ‘*’ called ‘value at address 
operator’. It returns the value stored at a particular address. The ‘value at 
address operator’ is also called an ‘indirection operator’.

• Indirection Operator:-

The & operator used in this statement is C’s ‘address of operator’. The 
expression &i returns the address of variable i.
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Dynamic Memory Allocation

The concept of dynamic memory allocation in c language enables the C 
programmer to allocate memory at runtime. Dynamic memory allocation in c 
language is possible by 4 functions of stdlib.h header file.

• malloc()

• calloc()

• realloc()

• free()

malloc() allocates single block of requested memory.

calloc() allocates multiple block of requested memory.

realloc() reallocates the memory occupied by malloc() or calloc() functions.

free() frees the dynamically allocated memory.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)



Malloc()

The malloc() function allocates single block of requested memory. It doesn't 
initialize memory at execution time, so it has garbage value initially. It returns NULL 
if memory is not sufficient.

Syntax :-

ptr = (cast-type*)malloc(byte-size)
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Program on malloc()
int main(){  

int n,i,*ptr,sum=0;    

printf("Enter number of elements: ");    

scanf("%d",&n);    

ptr=(int*)malloc(n*sizeof(int));   

if(ptr==NULL) {    

printf("Sorry! unable to allocate memory");    

exit(0);    

}    

printf("Enter elements of array: ");    

for(i=0; i<n; ++i){    

scanf("%d", ptr+i);    

sum+=*(ptr+i);    

}    

printf("Sum=%d", sum);    

free(ptr);     

return 0;  

} 
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calloc()

The calloc() function allocates multiple block of requested memory.

It initially initialize all bytes to zero.

It returns NULL if memory is not sufficient.

Syntax :-

Ptr = (cast-type*)calloc(number, byte-size)
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Program on calloc()
int main(){  

int n,i,*ptr,sum=0;    

printf("Enter number of elements: ");    

scanf("%d",&n);    

ptr=(int*)calloc(n,sizeof(int));  

if(ptr==NULL){    

printf("Sorry! unable to allocate memory");    

exit(0);    

}    

printf("Enter elements of array: ");    

for(i=0;i<n;++i){    

scanf("%d",ptr+i);    

sum+=*(ptr+i);    

}    

printf("Sum=%d",sum);    

free(ptr);    

return 0;  

} 
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realloc()

If memory is not sufficient for malloc() or calloc(), you can reallocate 
the memory by realloc() function. In short, it changes the memory size.

Syntax:-

ptr=realloc(ptr, new-size)
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Program on realloc()
int main() 

{ 

int* ptr; 

int n, i; 

n = 5; 

printf("Enter number of elements: %d\n", n); 

ptr = (int*)calloc(n, sizeof(int)); 

if (ptr == NULL) { 

printf("Memory not allocated.\n"); 

exit(0); 

} 

else { 

printf("Memory successfully allocated using calloc.\n"); 

for (i = 0; i < n; ++i) { 

ptr[i] = i + 1; 

} 
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printf("The elements of the array are: "); 

for (i = 0; i < n; ++i) { 

printf("%d, ", ptr[ i ]); 

} 

n = 10; 

printf("\n\n Enter the new size of the array: %d\n", n); 

ptr = realloc(ptr, n * sizeof(int)); 

printf("Memory successfully re-allocated using realloc.\n"); 

for (i = 5; i < n; ++i) { 

ptr[i] = i + 1; 

} 

printf("The elements of the array are: "); 

for (i = 0; i < n; ++i) { 

printf("%d, ", ptr[i]); 

} 

free(ptr); 

}
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free()

The memory occupied by malloc() or calloc() functions must be 
released by calling free() function. Otherwise, it will consume memory 
until program exit.

Syntax:-

free(ptr)
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Program on free()
int main() { 

int *ptr, *ptr1; 

int n, i; 

n = 5; 

printf("Enter number of elements: %d\n", n); 

ptr = (int*)malloc(n * sizeof(int)); 

ptr1 = (int*)calloc(n, sizeof(int)); 

if (ptr == NULL || ptr1 == NULL) { 

printf("Memory not allocated.\n"); 

exit(0); 

} 

else { 

printf("Memory successfully allocated using malloc.\n"); 

free(ptr); 

printf("Malloc Memory successfully freed.\n"); 

printf("\n Memory successfully allocated using calloc.\n");  

free(ptr1); 

printf("Calloc Memory successfully freed.\n"); 

} 

return 0; 
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Array and Pointer

Arrays and pointers are synonymous in terms of how they use to access 
memory. But, the important difference between them is that, 
a pointer variable can take different addresses as value whereas, in case 
of array it is fixed.
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Function and Pointer

In C, we can use function pointers to avoid code redundancy. For example a 
simple qsort() function can be used to sort arrays in ascending order or 
descending or by any other order in case of array of structures. Not only this, 
with function pointers and void pointers, it is possible to use qsort for any 
data type.
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String
String is a character array terminated by null character (\0) or we can say, a string is 
a sequence of characters terminated with a null character \0. The difference 
between a character array and a string is the string is terminated with a special 
character ‘\0’.

• Declaration of String:-

char str_var[size];

char str_var[] = "SMSVARANASI"; 
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• Initialization of strings:-

A string can be initialized in different ways. I will explain this with the help of an example. 

1. char str_var[] = "SMSVARANASI"; 

2. char str_var[40] = " SMSVARANASI ";

3. char str_var[] = {'S','M','S','V','A','R','A','N','A','S','I','\0'}; 

4.    char str_var[12] = {'S','M','S','V','A','R','A','N','A','S','I','\0'};

• Following is the memory presentation of the string in C language:-

str_value[0] str_value[1] str_value[2] str_value[3] str_value[4] str_value[5] str_value[6] str_value[7] str_value[8] str_value[9] str_value[10] str_value[11]

Index 0 1 2 3 4 5 6 7 8 9 10 11

Value S M S V A R A N A S I \0

Address 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
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String Library Function 

• strlen(): This function returns the length of the string. Example: strlen(name); This will return the 
length of the string stored in the variable name[].

• strcat(): This function concatenates two strings. Example: strcat(name,name1); This will 
concatenate the strings stored in the variables name[] and name1[] in the order in which it is 
written.

• strcpy(): This function copies the value of the second string to the first string. 
Example: strcpy(name1,name); This will copy the string in name[] to the variable name1[].

• strcmp(): It compares two strings. Example: strcmp(name,name1); This compares the string 
in name[] with the string in name1[]. It returns 0 if the strings are same. It returns a value less 
than 0 if name[]<name1[]. Otherwise, it returns a value greater than 0.
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• trlwr(): It changes all the characters of the string to lower case. Example: strlwr(name); It shall 
convert the whole string stored in the variable name[] to lowercase.

• strupr(): It changes all the characters of the string to upper case. Example: strupr(name); It shall 
convert the whole string stored in the variable name[] to uppercase.

• strchr(): It returns the location or the pointer of the first occurrence of a character in a string. 
Example: strchr(name,ch); It returns the location of the first occurrence of the character in ch in the 
string name[]. It returns null if the character is not found.

• strstr(): It returns the location or the pointer of the first occurrence of one string in another. 
Example: strstr(name,name1); It returns the location of the first occurrence of name1[] in name[]. It 
returns null if the string is not found.

• These library functions are defined in the header file <string.h>.
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Structure
In C programming, a struct (or structure) is a collection of variables (can be of 
different types) under a single name. Or To group variables of different types with a 
data type called structure. Structure is an example of heterogeneous data type. 

Let’s take an example to understand the need of structure: Suppose we need to 
store the data of students like student name, age, address, roll no etc. One way of 
doing this would be creating a different variable for each attribute, however when 
we need to store the data of multiple students then in that case, we would need to 
create these several variables again for each student. This is such a big headache to 
store data in this way. In such situations we can use structure
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• Declaration of Structure:-
structured data type. 

struct struct_name { 

DataType member1_name; 

DataType member2_name; 

DataType member3_name;

… 

};

Example: 

struct StudentData{

char stu_name[50]; 

int stu_roll; 

int stu_age; 

};
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• How to declare variable of a structure? 
struct struct_name var_name; 

or struct struct_name {

DataType member1_name; 

DataType member2_name; 

DataType member3_name; 

… 

} var_name;

Example: 

struct StudentData{

char stu_name[50]; 

int stu_roll; 

int stu_age;

};
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• How to access data members of a structure using a struct variable? 

Using Dot(.) operator 

var_name.member1_name; 

var_name.member2_name;

…

Example:

printf (“%s\n”, stud.stu_name);

printf (“%d\n”, stud.stu_roll); 

printf (“%d\n”, stud.age)
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• How to assign values to structure members?
1. Using Dot(.) operator 

var_name.member_name = value; 

Example:

stud.stu_name = “Hello”; 

stud.stu_roll = 20; 

stud.age = 23;

2.    All members assigned in one statement 

struct struct_name var_name =

{value for member1, value for member2 …so on for all the members};

Example: 

struct StudentData stud = {“Hello”, 20, 23};
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Union

A union is block of memory that is used to hold data items of different types. In C, a 
union is similar to a structure, except that data items saved in the union are 
overlaid in order to share the same memory location. 

Or

A union is a special data type available in C that allows to store different data types 
in the same memory location. You can define a union with many members, but only 
one member can contain a value at any given time. Unions provide an efficient way 
of using the same memory location for multiple-purpose
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• Declaration of Union:-

union Data 

{

int i;

float f; 

char str[20]; 

};

Program on Union:-

#include union Data { 

int i;

float f; 

char str[20];

};

int main( ) { 

union Data data ; 

printf( "Memory size occupied by data : %d\n", sizeof(data)); 

return 0; 

}
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This is a brief introduction of C programming language…

For more content on C you can refer

https://www.w3schools.in/c-tutorial/

Thank You RGG Sir for your support…
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