
Created by: Akhilesh Kumar Mishra (BC/22/011)
Kiran Maurya (BC/22/043)

Bachelor of Computer Application, SMS VARANASI
(Batch 2019-2022)

01.

02.

03.

04.

What is Programming
Language?

C- program

Basic terms in C

Operators

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

05.

06.

07.

08.

Control Statement

Function

Recursion

Array

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

09.

10.

11.

12.

Pointer

Dynamic Memory
Allocation

String

Structure

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

13. Union

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

What is Programming Language?

A programming language is a vocabulary and set of grammatical rules
for instructing a computer or computing device to perform specific
tasks.

It is a way of communication between Human being and Computer.

Some examples of Programming Languages are:-

C, C++, Java, Python etc.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

In this Presentation we will discuss about C
language.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

C- Language

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

What is C?

C is a programming language developed by AT & T’s Laboratories f USA
in 1972. It was designed and written by a men named Dennis Ritchie. It
is use to design an operating system.

C has became popular because it is:-

• Simple

• Reliable

• Easy to use

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Development of C/ History of C

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Similarity between C language and English language

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Features of C language

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Why C is called as Middle Level Language?

C is called middle-level language because it actually binds the
gap between a machine level language and high-level languages . A
user can use c language to do System Programming (for writing
operating system) as well as Application Programming (for generating
menu driven customer billing system) .

C Machine-level
language

High level
language

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Constant, Variables, Keywords, Instructions,
Comments

Constant:- Constants in C are the fixed values that

are used in a program, and its value remains the same during the entire execution of
the program. Constants are also called literals.

Variables:- A variable is nothing but a name given to a storage area that our

programs can manipulate.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Keywords:- Keywords are predefined, reserved words in C language and each

of which is associated with specific features. These words help us to use the
functionality of C language. They have special meaning to the compilers. There are
total 32 keywords in C.

Instructions:- C instructions are the commands in the program that instructs

the compiler to do certain action.

Comments:- A comment is an explanation or description of the
source code of the program. It helps a developer explain logic of the code

and improves program readability. At run-time,a comment is ignored by the

compiler.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

C-Program

* Format of C- program:-

#directive

main()

{

……………….

……………….

}

Function Name

Starting of program

Program Statement /
Instructions

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

First C- Program:-

#include<stdio.h>

int main()

{

printf("Hello World");

return 0;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Basic terms in C

• Printf() :- Use for printing output on the screen. Example:

printf("Hello World");

• Scanf():- Use for taking input from the user. Example:-

scanf("%d", &a);

‘&’ is an address operator.

• Data types :- A data type specifies the type of data that a variable can
store. Example:

integer, floating, character, etc.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Identifiers :- C identifiers represent the name in the C program, for example,
variables, functions, arrays, structures, unions, labels, etc. An identifier can be
composed of letters such as uppercase, lowercase letters, underscore, digits, but the
starting letter should be either an alphabet or an underscore.

• Variables :- A variable is nothing but a name given to a storage area that our
programs can manipulate. Each variable in C has a specific type, which determines the
size and layout of the variable's memory; the range of values that can be stored within
that memory; and the set of operations that can be applied to the variable.

• Getch() :- It is use to hold output screen after program execution until use
enter any other key. To use getch() we have to use #include<conio.h>
header file.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Operators

Operator:- An operator is a symbol that tells the compiler to perform specific
mathematical or logical functions. C language is rich in built-in operators.

Types of Operator:-

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Statement :-
Command given to computer to perform a specific task.

Types of statement :-
1. Expression Statement:- Simple statement consists of expression and semi-colon.

2. Compound Statement:- Combination of two or more simple statement connected
by logic.

3. Control Statement:- Control the flow of statement and decide which statement is
true or false.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Types of control statement

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Control Statement

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Decision Making Statement

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

If statement

#include<stdio.h>

int main(){

int number=0;

printf("Enter a number:");

scanf("%d",&number);

if(number%2==0){

printf("%d is even number",number);

}

return 0;

}
Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

If-else Statement
#include <stdio.h>

int main()

{

int age;

printf("Enter your age?");

scanf("%d", &age);

if(age>=18)

{

printf("You are eligible to vote...");

}

else

{

printf("Sorry ... you can't vote");

}

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Switch

#include<stdio.h>

int main(){

int number=0;

printf("enter a number:");

scanf("%d", &number);

switch(number){

case 10:

printf("number is equals to 10");

break;

case 50:

printf("number is equal to 50");

break;

case 100:

printf("number is equal to 100");

break;

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;

} Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Iteration (Loop) Statement

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

While loop and do-while loop

While loop

#include<stdio.h>

int main(){

int i=1;

while(i<=10){

printf("%d \n",i);

i++;

}

return 0;

}

Do-while loop
#include<stdio.h>

int main(){

int i=1;

do{

printf("%d \n",i);

i++;

}while(i<=10);

return 0;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

For loop

#include<stdio.h>

int main(){

int i=0;

for(i=1;i<=10;i++){

printf("%d \n",i);

}

return 0;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Jump Statement

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

goto statement

#include <stdio.h>

int main()

{

int num , I = 1;

printf("Enter the number whose table you want to print?");

scanf("%d", &num);

table:

printf("%d x %d = %d\n“, num , i, num * i);

i++;

if(i<=10)

goto table;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Continue Statement

#include<stdio.h>

void main ()

{

int i = 0;

while(i!=10)

{

printf("%d", i);

continue;

i++;

}

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Break Statement

#include<stdio.h>

#include<stdlib.h>

void main ()

{

int i;

for(i = 0; i<10; i++)

{

printf("%d ",i);

if(i == 5)

break;

}

printf("came outside of loop i = %d",i);

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Function

A function is a set of statements that together perform a specific task.

Syntax:-

return_type function_name (parameter)

{

body of function;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Steps of writing Function

1. Declaration of function

2. Calling of function

3. Define a function

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Types of Function

1. Library Function:- Library function are those functions which are inbuilt in
compiler, and user don’t needs to create it. Example:-

sqrt();

2. User define Function:- User define functions are those functions which is
created by user for according to their requirement, it is not inbuilt in compiler.
Example:-

char akhilesh();

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Passing Parameter in function can be done in two ways

Call by Value

#include <stdio.h>

void swap(int , int);

int main()

{

int a = 10;

int b = 20;

printf("Before swapping the values in main a = %d, b = %d\n",a,b);

printf("After swapping values in main a = %d, b = %d\n",a,b);

void swap (int a, int b)

{

int temp;

temp = a;

a=b;

b=temp;

printf("After swapping values in function a = %d, b = %d\n",a,b);

}

Call by Reference

#include<stdio.h>

void change(int *num) {

printf("Before adding value inside function num=%d \n",*num);

(*num) += 100;

printf("After adding value inside function num=%d \n", *num);

}

int main() {

int x=100;

printf("Before function call x=%d \n", x);

change(&x);

printf("After function call x=%d \n", x);

return 0;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Difference between Call by value and Call by reference

Call By Value Call By Reference

Here, actual value of variable are passed. Instead of value reference of memory is
passed.

Here, value of each variable is copied into
corresponding another variable.

Here, address of actual parameters is
copied.

Any change in formal parameter , does
not reflect in the actual parameter.

If there is any change in parameter it will
reflect every where.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Recursion

Recursion is the process of repeating items in a self-similar way. In
programming languages, if a program allows you to call a function
inside the same function, then it is called a recursive call of the
function. The C programming language supports recursion, i.e., a
function to call itself.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Example of Recursion Function
#include <stdio.h>

int fact (int);

int main() {

int n, f;

printf("Enter the number whose factorial you want to calculate?");

scanf("%d“ ,&n);

f = fact(n);

printf("factorial = %d", f);

}

int fact(int n) {

if (n==0)

{

return 0;

}

else if (n == 1) {

return 1;

}

else {

return n*fact(n-1);

}

}
Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Array

An array is defined as the collection of similar type of data items stored
at contiguous memory locations. Arrays are the derived data type
in C programming language which can store the primitive type of data
such as int, char, double, float, etc.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Types of Array

1. One-Dimension Array

2. Two-Dimension Array

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

1. One-Dimension Array

A one-dimensional array (or single dimension array) is a type of
linear array. Accessing its elements involves a single subscript which
can either represent a row or column index.

• Declaration of Array:-

data_type array_name[array_size];

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Initialization of Array:-

data_type array_name[size] = {list of values};

int num[5] = {1,2,3,4,5}

data_type array_name[] = {list of values};

int num[] = {1,2,3,4,5}

• Accessing Array Elements:-

Subscript of array starts with 0.

int mydata[20]; -> total number of array.

mydata[0]; -> first element of array.

mydata[19]; -> last element of array.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Program of 1-D array
int main(){

int arr[5], i;

for(i = 0; i < 5; i++){

printf("Enter a[%d]: ", i);

scanf("%d", &arr[i]);

}

printf("\n Printing elements of the array: \n\n");

for(i = 0; i < 5; i++){

printf("%d ", arr[i]);

}

return 0;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

2. Two-Dimension Array

Two-dimensional array can be defined as an array of arrays. The 2D
array is organized as matrices which can be represented as the
collection of rows and columns.

• Declaration of Array:-

data_type array_name[Row_Size][Column_Size];

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Initialization of Array:-

data_type array_name[Row_Size][Column_Size];

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

• Accessing Array Elements:-

An element in a 2-D array is access by using the subscripts, i.e., row index and column
index.

int value = a[2][3];

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Program of 2-D array

#include<stdio.h>

int main(){

int i=0,j=0;

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

for(i=0;i<4;i++){

for(j=0;j<3;j++){

printf("arr[%d] [%d] = %d \n",i,j,arr[i][j]);

}

}

return 0;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Pointer

The Pointer in C, is a variable that stores address of another variable. A pointer can
also be used to refer to another pointer function. A pointer can be
incremented/decremented, i.e., to point to the next/ previous memory location.
The purpose of pointer is to save memory space and achieve faster execution time.

50 1001

1001 2047

Variable Pointer Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Declaration of Pointer Variable:-

data_type *pointer_variable;

int *p;

‘*’ Called asterisk sign. When use with variable name indicates that the
variable is a pointer variable and it makes a differentiation between an
ordinary variable and a pointer variable.

Pointer variable is a variable that holds the address of another variable.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Initialization of Pointer:-

Address operator (&) is use to initialize a pointer variable. Example:-

int qty = 175;

int *p; -> declaration

p = &qty; -> initialization

Variable Value Address

qty 175 5000

p 5000 5048

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Indirection Operator:-

The pointer operator, available in C is ‘*’ called ‘value at address
operator’. It returns the value stored at a particular address. The ‘value at
address operator’ is also called an ‘indirection operator’.

• Indirection Operator:-

The & operator used in this statement is C’s ‘address of operator’. The
expression &i returns the address of variable i.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Dynamic Memory Allocation

The concept of dynamic memory allocation in c language enables the C
programmer to allocate memory at runtime. Dynamic memory allocation in c
language is possible by 4 functions of stdlib.h header file.

• malloc()

• calloc()

• realloc()

• free()

malloc() allocates single block of requested memory.

calloc() allocates multiple block of requested memory.

realloc() reallocates the memory occupied by malloc() or calloc() functions.

free() frees the dynamically allocated memory.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Malloc()

The malloc() function allocates single block of requested memory. It doesn't
initialize memory at execution time, so it has garbage value initially. It returns NULL
if memory is not sufficient.

Syntax :-

ptr = (cast-type*)malloc(byte-size)

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Program on malloc()
int main(){

int n,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)malloc(n*sizeof(int));

if(ptr==NULL) {

printf("Sorry! unable to allocate memory");

exit(0);

}

printf("Enter elements of array: ");

for(i=0; i<n; ++i){

scanf("%d", ptr+i);

sum+=*(ptr+i);

}

printf("Sum=%d", sum);

free(ptr);

return 0;

}
Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

calloc()

The calloc() function allocates multiple block of requested memory.

It initially initialize all bytes to zero.

It returns NULL if memory is not sufficient.

Syntax :-

Ptr = (cast-type*)calloc(number, byte-size)

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Program on calloc()
int main(){

int n,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)calloc(n,sizeof(int));

if(ptr==NULL){

printf("Sorry! unable to allocate memory");

exit(0);

}

printf("Enter elements of array: ");

for(i=0;i<n;++i){

scanf("%d",ptr+i);

sum+=*(ptr+i);

}

printf("Sum=%d",sum);

free(ptr);

return 0;

}
Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

realloc()

If memory is not sufficient for malloc() or calloc(), you can reallocate
the memory by realloc() function. In short, it changes the memory size.

Syntax:-

ptr=realloc(ptr, new-size)

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Program on realloc()
int main()

{

int* ptr;

int n, i;

n = 5;

printf("Enter number of elements: %d\n", n);

ptr = (int*)calloc(n, sizeof(int));

if (ptr == NULL) {

printf("Memory not allocated.\n");

exit(0);

}

else {

printf("Memory successfully allocated using calloc.\n");

for (i = 0; i < n; ++i) {

ptr[i] = i + 1;

}
Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

printf("The elements of the array are: ");

for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

n = 10;

printf("\n\n Enter the new size of the array: %d\n", n);

ptr = realloc(ptr, n * sizeof(int));

printf("Memory successfully re-allocated using realloc.\n");

for (i = 5; i < n; ++i) {

ptr[i] = i + 1;

}

printf("The elements of the array are: ");

for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

free(ptr);

}

return 0; Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

free()

The memory occupied by malloc() or calloc() functions must be
released by calling free() function. Otherwise, it will consume memory
until program exit.

Syntax:-

free(ptr)

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Program on free()
int main() {

int *ptr, *ptr1;

int n, i;

n = 5;

printf("Enter number of elements: %d\n", n);

ptr = (int*)malloc(n * sizeof(int));

ptr1 = (int*)calloc(n, sizeof(int));

if (ptr == NULL || ptr1 == NULL) {

printf("Memory not allocated.\n");

exit(0);

}

else {

printf("Memory successfully allocated using malloc.\n");

free(ptr);

printf("Malloc Memory successfully freed.\n");

printf("\n Memory successfully allocated using calloc.\n");

free(ptr1);

printf("Calloc Memory successfully freed.\n");

}

return 0;

} Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Array and Pointer

Arrays and pointers are synonymous in terms of how they use to access
memory. But, the important difference between them is that,
a pointer variable can take different addresses as value whereas, in case
of array it is fixed.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Function and Pointer

In C, we can use function pointers to avoid code redundancy. For example a
simple qsort() function can be used to sort arrays in ascending order or
descending or by any other order in case of array of structures. Not only this,
with function pointers and void pointers, it is possible to use qsort for any
data type.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

String
String is a character array terminated by null character (\0) or we can say, a string is
a sequence of characters terminated with a null character \0. The difference
between a character array and a string is the string is terminated with a special
character ‘\0’.

• Declaration of String:-

char str_var[size];

char str_var[] = "SMSVARANASI";

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Initialization of strings:-

A string can be initialized in different ways. I will explain this with the help of an example.

1. char str_var[] = "SMSVARANASI";

2. char str_var[40] = " SMSVARANASI ";

3. char str_var[] = {'S','M','S','V','A','R','A','N','A','S','I','\0'};

4. char str_var[12] = {'S','M','S','V','A','R','A','N','A','S','I','\0'};

• Following is the memory presentation of the string in C language:-

str_value[0] str_value[1] str_value[2] str_value[3] str_value[4] str_value[5] str_value[6] str_value[7] str_value[8] str_value[9] str_value[10] str_value[11]

Index 0 1 2 3 4 5 6 7 8 9 10 11

Value S M S V A R A N A S I \0

Address 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

String Library Function

• strlen(): This function returns the length of the string. Example: strlen(name); This will return the
length of the string stored in the variable name[].

• strcat(): This function concatenates two strings. Example: strcat(name,name1); This will
concatenate the strings stored in the variables name[] and name1[] in the order in which it is
written.

• strcpy(): This function copies the value of the second string to the first string.
Example: strcpy(name1,name); This will copy the string in name[] to the variable name1[].

• strcmp(): It compares two strings. Example: strcmp(name,name1); This compares the string
in name[] with the string in name1[]. It returns 0 if the strings are same. It returns a value less
than 0 if name[]<name1[]. Otherwise, it returns a value greater than 0.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• trlwr(): It changes all the characters of the string to lower case. Example: strlwr(name); It shall
convert the whole string stored in the variable name[] to lowercase.

• strupr(): It changes all the characters of the string to upper case. Example: strupr(name); It shall
convert the whole string stored in the variable name[] to uppercase.

• strchr(): It returns the location or the pointer of the first occurrence of a character in a string.
Example: strchr(name,ch); It returns the location of the first occurrence of the character in ch in the
string name[]. It returns null if the character is not found.

• strstr(): It returns the location or the pointer of the first occurrence of one string in another.
Example: strstr(name,name1); It returns the location of the first occurrence of name1[] in name[]. It
returns null if the string is not found.

• These library functions are defined in the header file <string.h>.

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Structure
In C programming, a struct (or structure) is a collection of variables (can be of
different types) under a single name. Or To group variables of different types with a
data type called structure. Structure is an example of heterogeneous data type.

Let’s take an example to understand the need of structure: Suppose we need to
store the data of students like student name, age, address, roll no etc. One way of
doing this would be creating a different variable for each attribute, however when
we need to store the data of multiple students then in that case, we would need to
create these several variables again for each student. This is such a big headache to
store data in this way. In such situations we can use structure

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Declaration of Structure:-
structured data type.

struct struct_name {

DataType member1_name;

DataType member2_name;

DataType member3_name;

…

};

Example:

struct StudentData{

char stu_name[50];

int stu_roll;

int stu_age;

};

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• How to declare variable of a structure?
struct struct_name var_name;

or struct struct_name {

DataType member1_name;

DataType member2_name;

DataType member3_name;

…

} var_name;

Example:

struct StudentData{

char stu_name[50];

int stu_roll;

int stu_age;

};

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• How to access data members of a structure using a struct variable?

Using Dot(.) operator

var_name.member1_name;

var_name.member2_name;

…

Example:

printf (“%s\n”, stud.stu_name);

printf (“%d\n”, stud.stu_roll);

printf (“%d\n”, stud.age)

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• How to assign values to structure members?
1. Using Dot(.) operator

var_name.member_name = value;

Example:

stud.stu_name = “Hello”;

stud.stu_roll = 20;

stud.age = 23;

2. All members assigned in one statement

struct struct_name var_name =

{value for member1, value for member2 …so on for all the members};

Example:

struct StudentData stud = {“Hello”, 20, 23};

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

Union

A union is block of memory that is used to hold data items of different types. In C, a
union is similar to a structure, except that data items saved in the union are
overlaid in order to share the same memory location.

Or

A union is a special data type available in C that allows to store different data types
in the same memory location. You can define a union with many members, but only
one member can contain a value at any given time. Unions provide an efficient way
of using the same memory location for multiple-purpose

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

• Declaration of Union:-

union Data

{

int i;

float f;

char str[20];

};

Program on Union:-

#include union Data {

int i;

float f;

char str[20];

};

int main() {

union Data data ;

printf("Memory size occupied by data : %d\n", sizeof(data));

return 0;

}

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

This is a brief introduction of C programming language…

For more content on C you can refer

https://www.w3schools.in/c-tutorial/

Thank You RGG Sir for your support…

Akhilesh Kumar Mishra and Kiran Maurya (BCA,2019-2022)

