
UNIT-1 (ARRAY) (RAM GOPAL GUPTA- http://ramgopalgupta.com/)

DEFINITION, DECLARATION AND INITIALIZATION

Basic Concept

An array is a group (or collection) of homogenous data/ same data types arranged in sequential

format.

For example: an int array holds the elements of int types while a char array holds the elements of

char types.

Need of array

Consider a scenario where you need to find out the sum of 100 integer numbers entered by user.

In C, you have two ways to do this:

1) Define 100 variables with int data type and then perform 100 scanf() operations to store the

entered values in the variables and then at last calculate the sum of them.

OR

2) Have a single integer array to store all the values, loop the array to store all the entered values

in array and later calculate the sum.

Which one the best in above solutions: Obviously solution No: 2

How to declare Array in C

int num[15]; /* An integer array of 15 elements */

char ch[10]; /* An array of characters for 10 elements */

How to access element of an array in C (very important)

Suppose there is an array

int arr[20];

You can use array subscript (or index) to access any element stored in array. Subscript starts with

0, which means

arr[0] represents the 1 element in the array arr

arr[1] represents the 2 element in the array arr

arr[2] represents the 3 element in the array arr

.

.

.

.

arr[19] represent the 20
th

 (Last) element in the array arr.

therefore we can say array index start from [0] and end at [n-1]; if the size of array is n.

http://ramgopalgupta.com/

Array Memory allocation and representation

Below diagram shows how memory is allocated to an integer array of N elements. Its base

address – address of its first element is 10000. Since it is an integer array, each of its element

will occupy 2 bytes of space. Hence first element occupies memory from 10000 to 10001.

Second element of the array occupies immediate next memory address in the memory, i.e.;

10002 which requires another 2 bytes of space. Hence it occupies from 10002 to 10003. In this

way all the N elements of the array occupies the memory space.

int intArr [N];

If the array is a character array, then its elements will occupy 1 byte of memory each. If it is a

float array then its elements will occupy 8 bytes of memory each. But this is not the total size or

memory allocated for the array. They are the sizes of individual elements in the array. If we need

to know the total size of the array, then we need to multiply the number of elements with the size

of individual element.

i.e.; Total memory allocated to an Array = Number of elements * size of one element

Total memory allocated to an Integer Array of N elements = Number of elements * size of one

element

= N * 2 bytes

= 10 * 2 bytes = 20 Bytes, where N = 10 // int num [10]

= 500 * 2 bytes = 1000 Bytes, where N = 500 // int num [500]

Total memory allocated to an character Array of N elements= Number of elements * size of one

element

= N * 1 Byte

= 10 * 1 Byte = 10 Bytes, where N = 10 // char ch [10]

= 500 * 1 Byte = 500 Bytes, where N=500 // char ch [500]

This is how memory is allocated for the single dimensional array.

Ways to initialize/ assign a value to an array

Initialize an array

int arr[5] = {1, 2, 3, 4 ,5};

OR

int arr[] = {1, 2, 3, 4, 5};

(both are same)

10

(intArr [0])

Memory Address:

10000

20

(intArr [1])

Memory Address:

10002

30

(intArr [2])

Memory Address:

10004

................

...

(intArr [N-1])

Memory Address:

...........

Base Address

Assign a value to an array

int arr[10]; // array declaration

arr[0]=15; // assign a value to [0] index of array

arr[2]=10; // assign a value to [1] index of array

 to get a number from user and store in 0 index [0] of array use this code

 scanf(“%d”,arr[0]);

Display the array elements

main(){

 int num[]={20,34,56,90,10};

 printf(“%d\n”,num[0]); // way to display value from index [0] of array num

 printf(“%d\n”,num[1]); // way to display value from index [1] of array num

 printf(“%d\n”,num[2]); // way to display value from index [2] of array num

 printf(“%d\n”,num[3]); // way to display value from index [3] of array num

 printf(“%d\n”,num[4]); // way to display value from index [4] of array num

}

OR

main(){

 int i=0;

int num[]={20,34,56,90,10};

for(i=0; i<5; i++){

 printf(“%d\n”, num[i]); // way to display value from index [i] of array num

 }

}

Array types:

There are two types of array single dimensional array and multi-dimensional array.

Here we will cover single and two-dimensional array.

Single dimensional are covered in above write-up.

Now the turn of Two-dimensional array:

An array of arrays is known as 2D array. The two dimensional (2D) array in C programming is

also known as matrix. A matrix can be represented as a table of rows and columns.

Declare the 2D array is given below.

data_type array_name[rows][columns];

int num[5] [3];

Initialization of 2D array

int num[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

Assign a value to an array

num [row] [col] = value;

num[0] [0] = 20;

num[0] [1] =13;

Display the array elements

Syntax: printf(“%d”, num[row] [column]);

Program example:

main(){

int i=0, j=0;

int num[4] [3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

//traversing 2D array

for(i=0;i<4;i++){

 for(j=0;j<3;j++){

 printf("num[%d] [%d] = %d \n", i, j, num[i] [j]);

 }//end of j

}//end of i

}

2D-Array Memory allocation and representation

int intArr [3] [3];

Row Major Order

Let us consider a two dimensional array to explain how row major order way of storing elements

works. In the case of 2D array, its elements are considered as rows and columns of a table.

When we represent an array as intArr [i] [j], the first index of it represents the row elements and

the next index represents the column elements of each row.

1. When we store the array elements in row major order, first we will store the elements of

first row followed by second row and so on.

2. Hence in the memory we can find the elements of first row followed by second row and

so on.

3. In memory there will not be any separation between the rows.

4. We have to code in such a way that we have to count the number of elements in each row

depending on its column index.

5. But in memory all the rows and their columns will be contiguous.

6. Below diagram will illustrate the same for a 2D array of size 3 X 3 i.e.; 3 rows and 3

columns. int intArr [3] [3];

7. Array indexes always start from 0.

8. Hence the first element of the 2D array is at intArr[0][0]. This is the first row-first

column element.

9. Since it is an integer array and suppose it occupies 2 bytes of space.

10. Next memory space is occupied by the second element of the first row, i.e.; intArr [0][1]

– first row-second column element. This continues till all the first row elements are

occupied in the memory.

11. Next it picks the second row elements and is placed in the same way as first row. This

goes on till all the elements of the array are occupies the memory like below. This is how

it is placed in the memory.

12. But seeing the memory address or the value stored in the memory we cannot predict

which is the first row or second row or so.

10

(Arr [0] [0])

Memory Address: 10000

20

(Arr [0] [1])

Memory Address: 10002

30

(Arr [0] [2])

Memory Address: 10004

40

(Arr [1] [0])

Memory Address: 10006

50

(Arr [1] [1])

Memory Address: 10008

60

(Arr [1] [2])

Memory Address: 10010

70

(Arr [2] [0])

Memory Address: 10012

80

(Arr [2] [1])

Memory Address: 10014

90

(Arr [2] [2])

Memory Address: 10016

Base Address

Total size/ memory occupied by 2D array is calculated as

Total memory allocated to 2D Array = Number of elements * size of one element

 = Number of Rows * Number of Columns * Size of one element

Total memory allocated to an Integer Array of size M x N = Number of elements * size of one

element

assume an holds

=M Rows* N Columns * 2 Bytes

= 10*10 * 2 bytes = 200 Bytes, where M =N = 10 // int num [10] [10]

= 500*5 *2 bytes= 5000 Bytes, where M=500 and N= 5 // int num [500] [5]

Total memory allocated to an character Array of N elements= Number of elements * size of one

element

= M Rows* N Columns * 1 Byte

= 10*10 * 1 Byte = 100 Bytes, where N = 10 // char ch [10 [10]

= 500*5 * 1 Byte = 2500 Bytes, where M=500 and N= 5 // char ch [500] [5]

Column Major Order

This is the opposite method of row major order of storing the elements in the memory. In this

method all the first column elements are stored first, followed by second column elements and so

on.

10

(Arr [0] [0])

Memory Address: 10000

20

(Arr [0] [1])

Memory Address: 10006

30

(Arr [0] [2])

Memory Address: 10012

40

(Arr [1] [0])

Memory Address: 10002

50

(Arr [1] [1])

Memory Address: 10008

60

(Arr [1] [2])

Memory Address: 10014

70

(Arr [2] [0])

Memory Address: 10004

80

(Arr [2] [1])

Memory Address: 10010

90

(Arr [2] [2])

Memory Address: 10016

Total size/ memory occupied by 2D array is calculated as in the same way as above.

Total memory allocated to 2D Array = Number of elements * size of one element

 = Number of Rows * Number of Columns * Size of one element

Total memory allocated to an Integer Array of size M x N = Number of elements * size of one

element

=M Rows* N Columns * 2 Bytes

= 10*10 * 2 bytes = 200 Bytes, where M =N = 10 // int num [10] [10]

= 500*5 *2 bytes= 5000 Bytes, where M=500 and N= 5 // int num [500] [5]

Total memory allocated to an character Array of N elements= Number of elements * size of one

element

= M Rows* N Columns * 1 Byte

Base Address

= 10*10 * 1 Byte = 100 Bytes, where M = N = 10 // char ch [10] [10]

= 500*5 * 1 Byte = 2500 Bytes, where M=500 and N= 5 // char ch [500] [5]

FORMULA TO CALCULATE THE MEMORY ADDRESS IN 2D ARRAY:

Row major address: B + S * (N * (i-1) + j-1)

Column major address: B + S * (M * (j-1) + i-1)

 Here is an array of size M x N

 B is the base address of 2D array

 S is the size of each element in the array

 i is the row index

 j is the col index

Suppose an array: int Arr [3] [3];

now calculate the memory address of Arr [1] [2] in row major and col major using above

formula:

Row major address: B + S * (N * (i - 1) + j - 1)

in our case we want get the address of Arr [1] [2] that means 2 row and 3 col

B = 10000, S = 2 bytes (size of int data type)

N = 3 (no. Of cols in Arr), i= 2 (row number), j = 3 (col number)

Memory address of Arr [1] [2] (in Row major order)

= 10000 + 2 * (3 * (2 - 1) + 3 - 1)

= 10000 + 2 * (3 * 1 + 3 - 1)

= 10000 + 2 * (3 + 3 – 1)

= 10000 + 2 * (3 + 2)

= 10000 + 2 * 5

= 10000 + 10

= 10010

10

(Arr [0] [0])

Memory

Address:

10000

20

(Arr [0] [1])

Memory

Address:

10002

30

(Arr [0] [2])

Memory

Address:

10004

40

(Arr [1] [0])

Memory

Address:

10006

50

(Arr [1] [1])

Memory

Address:

10008

60

(Arr [1] [2])

Memory

Address:

10010

70

(Arr [2] [0])

Memory

Address:

10012

80

(Arr [2] [1])

Memory

Address:

10014

90

(Arr [2] [2])

Memory

Address:

10016

10

(Arr [0] [0])

Memory

Address:

10000

20

(Arr [0] [1])

Memory

Address:

10006

30

(Arr [0] [2])

Memory

Address:

10012

40

(Arr [1] [0])

Memory

Address:

10002

50

(Arr [1] [1])

Memory

Address:

10008

60

(Arr [1] [2])

Memory

Address:

10014

70

(Arr [2] [0])

Memory

Address:

10004

80

(Arr [2] [1])

Memory

Address:

10010

90

(Arr [2] [2])

Memory

Address:

10016

Base Address Base Address

Memory Address Representation Using Row Major Memory Address Representation Using Column Major

Column major address: B + S * (M * (j - 1) + i - 1)

in our case we want get the address of Arr [1] [2] that means 2 row and 3 col

B = 10000, S = 2 bytes (size of int data type)

M = 3 (no. of rows in Arr), i= 2 (row number), j = 3 (col number)

Memory address of Arr [1] [2] (in Col major order)

= 10000 + 2 * (3 * (3 - 1) + 2 - 1)

= 10000 + 2 * (3 * 2 + 2 - 1)

= 10000 + 2 * (6 + 2 – 1)

= 10000 + 2 * (6 + 1)

= 10000 + 2 * 7

= 10000 + 14

= 10014

