
Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 1

Unit-III

NETWORKING

Data Networking continues to evolve. The demand for a High-Speed Network Infrastructure has been

growing at an alarming rate. Just a few short years ago, 4 Mbps (Million bits per second) Token Ring

and 10 Mbps Ethernet shared networks were the norm. Now they can’t keep up with the growing

demands from end-users. End-user applications and files are growing in size and number.

TCP AND UDP

Computers running on the Internet communicate to each other using either the Transmission Control

Protocol (TCP) or the User Datagram Protocol (UDP), as this diagram illustrates:

When you write Java programs that communicate over the network, you are programming at the

application layer. Typically, you don't need to concern yourself with the TCP and UDP layers. Instead,

you can use the classes in the java.net package. These classes provide system-independent network

communication. However, to decide which Java classes your programs should use, you do need to

understand how TCP and UDP differ.

TCP

When two applications want to communicate to each other reliably, they establish a connection and

send data back and forth over that connection. This is analogous to making a telephone call. If you want

to speak to Aunt Beatrice in Kentucky, a connection is established when you dial her phone number and

she answers. You send data back and forth over the connection by speaking to one another over the

phone lines. Like the phone company, TCP guarantees that data sent from one end of the connection

actually gets to the other end and in the same order it was sent. Otherwise, an error is reported.

TCP provides a point-to-point channel for applications that require reliable communications. The

Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and Telnet are all examples of

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 2

applications that require a reliable communication channel. The order in which the data is sent and

received over the network is critical to the success of these applications. When HTTP is used to read

from a URL, the data must be received in the order in which it was sent. Otherwise, you end up with a

jumbled HTML file, a corrupt zip file, or some other invalid information.

UDP

The UDP protocol provides for communication that is not guaranteed between two applications on the

network. UDP is not connection-based like TCP. Rather, it sends independent packets of data, called

datagrams, from one application to another. Sending datagrams is much like sending a letter through

the postal service: The order of delivery is not important and is not guaranteed, and each message is

independent of any other.

For many applications, the guarantee of reliability is critical to the success of the transfer of information

from one end of the connection to the other. However, other forms of communication don't require

such strict standards. In fact, they may be slowed down by the extra overhead or the reliable connection

may invalidate the service altogether.

Consider, for example, a clock server that sends the current time to its client when requested to do so. If

the client misses a packet, it doesn't really make sense to resend it because the time will be incorrect

when the client receives it on the second try. If the client makes two requests and receives packets from

the server out of order, it doesn't really matter because the client can figure out that the packets are out

of order and make another request. The reliability of TCP is unnecessary in this instance because it

causes performance degradation and may hinder the usefulness of the service.

Another example of a service that doesn't need the guarantee of a reliable channel is the ping

command. The purpose of the ping command is to test the communication between two programs over

the network. In fact, ping needs to know about dropped or out-of-order packets to determine how good

or bad the connection is. A reliable channel would invalidate this service altogether.

The UDP protocol provides for communication that is not guaranteed between two applications on the

network. UDP is not connection-based like TCP. Rather, it sends independent packets of data from one

application to another. Sending datagrams is much like sending a letter through the mail service: The

order of delivery is not important and is not guaranteed, and each message is independent of any

others.

Understanding Ports

Generally speaking, a computer has a single physical connection to the network. All data destined for a

particular computer arrives through that connection. However, the data may be intended for different

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 3

applications running on the computer. So how does the computer know to which application to forward

the data? Through the use of ports.

Data transmitted over the Internet is accompanied by addressing information that identifies the

computer and the port for which it is destined. The computer is identified by its 32-bit IP address, which

IP uses to deliver data to the right computer on the network. Ports are identified by a 16-bit number,

which TCP and UDP use to deliver the data to the right application.

In connection-based communication such as TCP, a server application binds a socket to a specific port

number. This has the effect of registering the server with the system to receive all data destined for that

port. A client can then rendezvous with the server at the server's port, as illustrated here:

NETWORKING WITH JAVA

Network access is crucial to computer operations in the twenty first century. Java provides many built-in

networking class objects through its .net, .nio and .rmi packages. java.net provides http connections and

streams as well as protocol sockets. java.nio, java.nio.charset and java.nio.channels provide buffers,

character sets and channels for multiplexed non-blocking applications that are more tolerant of dropped

connections and time delays. java.rmi provides methods for remote method invocation

The Internet is composed of millions of computers, located all across the globe, communicating and

transmitting information over a variety of computing systems, platforms, and networking equipment.

Each of these computers (unless they are connecting via an intranet) will have a unique IP address.

Often, computers connected to the Internet provide services. This page is provided by a web server, for

example. Because computers are capable of providing more than one type of service, we need a way to

uniquely identify each service. Like an IP address, we use a number. We call this number a port.

Common services (such as HTTP, FTP, Telnet, SMTP) have well known port numbers. For example, most

web servers use port 80. Of course, you can use any port you like - there's no rule that says you must

use 80.

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 4

Ports help computers identify which service data is for.

Handling internet addresses (domain names, and IP addresses) is made easy with Java. Internet

addresses are represented in Java by the InetAddress class. InetAddress provides simple
methods to convert between domain names, and numbered addresses.

CLIENT / SERVER

You often hear the term client/server mentioned in the context of networking. It seems
complicated when you read about it in corporate marketing statements, but it is actually quite

simple. A server is anything that has some resource that can be shared. There are compute
servers, which provide computing power; print servers, which manage a collection of printers;
disk servers, which provide networked disk space; and web servers, which store web pages. A

client is simply any other entity that wants to gain access to a particular server. The interaction
between client and server is just like the interaction between a lamp and an electrical socket.

The power grid of the house is the server, and the lamp is a power client. The server is a
permanently available resource, while the client is free to “unplug” after it is has been served. in
Berkeley sockets, the notion of a socket allows a single computer to serve many different

clients at once, as well as serving many different types of information. This feat is managed by
the introduction of a port, which is a numbered socket on a particular machine. A server process

is said to “listen” to a port until a client connects to it. A server is allowed to accept multiple
clients connected to the same port number, although each session is unique. To manage
multiple client connections, a server process must be multithreaded or have some other means

of multiplexing the simultaneous I/O .

EXAMPLE:

import java.net.InetAddress;

import java.net.UnknownHostException;

/*

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 5

 * Main.java

 *

 * @author R.G.Gupta

 */

public class Main {

 /*

 * This method performs a NS Lookup

 */

 public void performNSLookup() {

 try {

 InetAddress inetHost = InetAddress.getByName("cnn.com");

 String hostName = inetHost.getHostName();

 System.out.println("The host name was: " + hostName);

 System.out.println("The hosts IP address is: " + inetHost.getHostAddress());

 } catch(UnknownHostException ex) {

 System.out.println("Unrecognized host");

 }

 }

 /**

 * @param args the command line arguments

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 6

 */

 public static void main(String[] args) {

 new Main().performNSLookup();

 }

}

SOCKET CLASS

This class implements client sockets (also called just "sockets"). A socket is an endpoint for
communication between two machines.

The actual work of the socket is performed by an instance of the SocketImpl class. An

application, by changing the socket factory that creates the socket implementation, can

configure itself to create sockets appropriate to the local firewall.

A network socket is a lot like an electrical socket. Various plugs around the network have a

standard way of delivering their payload. Anything that understands the standard protocol can
“plug in” to the socket and communicate. With electrical sockets, it doesn’t mat ter if you plug
in a lamp or a toaster; as long as they are expecting 60Hz, 115-volt electricity, the devices will

work. Think how your electric bill is created. There is a metersomewhere between your house
and the rest of the network. For each kilowatt of power that goes through that meter, you are

billed. The bill comes to your “address.” So even though the electricity flows freely around the
power grid, all of the sockets in your house have a particular address. The same idea applies to
network sockets, except we talk about TCP/IP packets and IP addresses rather than electrons

and street addresses. Internet Protocol (IP) is a low-level routing protocol that breaks data into
small packets and sends them to an address across a network, which does not guarantee to

deliver said packets to the destination. Transmission Control Protocol (TCP) is a higher- level
protocol that manages to robustly string together these packets, sorting and retransmitting them
as necessary to reliably transmit your data. A third protocol, User Datagram Protocol (UDP),

sits next to TCP and can be used directly to support fast, connectionless, unreliable transport of
packets.

CONSTRUCTORS:

1) protected Socket()

Creates an unconnected socket, with the system-default type of SocketImpl.

2) protected Socket(SocketImpl impl)

 throws SocketException

Creates an unconnected Socket with a user-specified SocketImpl.

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 7

Parameters:

impl - an instance of a SocketImpl the subclass wishes to use on the Socket.

Throws:

SocketException - if there is an error in the underlying protocol, such as a TCP error

3) public Socket(String host,

 int port)

 throws UnknownHostException,

 IOException

Creates a stream socket and connects it to the specified port number on the named host.

If the application has specified a server socket factory, that factory's createSocketImpl

method is called to create the actual socket implementation. Otherwise a "pla in" socket

is created.

If there is a security manager, its checkConnect method is called with the host address

and port as its arguments. This could result in a SecurityException.

Parameters:

host - the host name.

port - the port number.

Throws:

UnknownHostException - if the IP address of the host could not be determined.

IOException - if an I/O error occurs when creating the socket.

SecurityException - if a security manager exists and its checkConnect method doesn't

allow the operation

4) public Socket(InetAddress address,

 int port)

 throws IOException

Creates a stream socket and connects it to the specified port number at the specified IP address.

If the application has specified a socket factory, that factory's createSocketImpl

method is called to create the actual socket implementation. Otherwise a "plain" socket

is created.

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 8

If there is a security manager, its checkConnect method is called with the host address

and port as its arguments. This could result in a SecurityException.

Parameters:

address - the IP address.

port - the port number.

Throws:

IOException - if an I/O error occurs when creating the socket.

SecurityException - if a security manager exists and its checkConnect method doesn't

allow the operation.

5) public Socket(InetAddress host,

 int port,

 boolean stream)

 throws IOException

Deprecated. Use DatagramSocket instead for UDP transport.

Creates a socket and connects it to the specified port number at the specified IP address.

If the stream argument is true, this creates a stream socket. If the stream argument is

false, it creates a datagram socket.

If the application has specified a server socket factory, that factory's createSocketImpl

method is called to create the actual socket implementation. Otherwise a "plain" socket
is created.

If there is a security manager, its checkConnect method is called with

host.getHostAddress() and port as its arguments. This could result in a

SecurityException.

Parameters:

host - the IP address.

port - the port number.

stream - if true, create a stream socket; otherwise, create a datagram socket.

Throws:

IOException - if an I/O error occurs when creating the socket.

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 9

SecurityException - if a security manager exists and its checkConnect method doesn't

allow the operation.

EXAMPLE:

This example introduces you to Java socket programming. The server listens for a connection.
When a connection is established by a client. The client can send data. In the current example
the client sends the message "Hi my server". To terminate the connection, the client sends the

message "bye". Then the server sends the message "bye" too. Finally the connection is ended
and the server waits for an other connection. The two programs should be runned in the same

machine. however if you want to run them in two different machines, you may simply change
the adress "localhost" by the IP adress of the machine where you will run the server.

The server:-

import java.io.*;

import java.net.*;

public class Provider{

 ServerSocket providerSocket;

 Socket connection = null;

 ObjectOutputStream out;

 ObjectInputStream in;

 String message;

 Provider(){}

 void run()

 {

 try{

 //1. creating a server socket

 providerSocket = new ServerSocket(2004, 10);

 //2. Wait for connection

 System.out.println("Waiting for connection");

 connection = providerSocket.accept();

 System.out.println("Connection received from " +

connection.getInetAddress().getHostName());

 //3. get Input and Output streams

 out = new

ObjectOutputStream(connection.getOutputStream());

 out.flush();

 in = new

ObjectInputStream(connection.getInputStream());

 sendMessage("Connection successful");

 //4. The two parts communicate via the input and output

streams

 do{

 try{

 message = (String)in.readObject();

 System.out.println("client>" +

message);

 if (message.equals("bye"))

 sendMessage("bye");

 }

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 10

 catch(ClassNotFoundException classnot){

 System.err.println("Data received in

unknown format");

 }

 }while(!message.equals("bye"));

 }

 catch(IOException ioException){

 ioException.printStackTrace();

 }

 finally{

 //4: Closing connection

 try{

 in.close();

 out.close();

 providerSocket.close();

 }

 catch(IOException ioException){

 ioException.printStackTrace();

 }

 }

 }

 void sendMessage(String msg)

 {

 try{

 out.writeObject(msg);

 out.flush();

 System.out.println("server>" + msg);

 }

 catch(IOException ioException){

 ioException.printStackTrace();

 }

 }

 public static void main(String args[])

 {

 Provider server = new Provider();

 while(true){

 server.run();

 }

 }

}

The client:-

import java.io.*;

import java.net.*;

public class Requester{

 Socket requestSocket;

 ObjectOutputStream out;

 ObjectInputStream in;

 String message;

 Requester(){}

 void run()

 {

 try{

 //1. creating a socket to connect to the server

 requestSocket = new Socket("localhost", 2004);

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 11

 System.out.println("Connected to localhost in port

2004");

 //2. get Input and Output streams

 out = new

ObjectOutputStream(requestSocket.getOutputStream());

 out.flush();

 in = new

ObjectInputStream(requestSocket.getInputStream());

 //3: Communicating with the server

 do{

 try{

 message = (String)in.readObject();

 System.out.println("server>" +

message);

 sendMessage("Hi my server");

 message = "bye";

 sendMessage(message);

 }

 catch(ClassNotFoundException classNot){

 System.err.println("data received in

unknown format");

 }

 }while(!message.equals("bye"));

 }

 catch(UnknownHostException unknownHost){

 System.err.println("You are trying to connect to an

unknown host!");

 }

 catch(IOException ioException){

 ioException.printStackTrace();

 }

 finally{

 //4: Closing connection

 try{

 in.close();

 out.close();

 requestSocket.close();

 }

 catch(IOException ioException){

 ioException.printStackTrace();

 }

 }

 }

 void sendMessage(String msg)

 {

 try{

 out.writeObject(msg);

 out.flush();

 System.out.println("client>" + msg);

 }

 catch(IOException ioException){

 ioException.printStackTrace();

 }

 }

 public static void main(String args[])

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 12

 {

 Requester client = new Requester();

 client.run();

 }

}

JDBC
Java Database Connectivity or in short JDBC is a technology that enables the java program to

manipulate data stored into the database. It was developed by JavaSoft, a subsidiary of Sun
Microsystems

With the "write once, compile once, run anywhere" power that JDBC offers us, Java's database
connectivity allows us to concentrate on the translation of relational data into objects instead of
how we can get that data from the database.

JDBC enables Java programs to execute SQL statements. This allows Java programs to interact with any

SQL-compliant database. Since nearly all relational database management systems (DBMSs) support

SQL, and because Java itself runs on most platforms, JDBC makes it possible to write a single database

application that can run on different platforms and interact with different DBMSs.

JDBC is a Java Database Connectivity API that lets you access virtually any tabular data source
from a Java application. In addition to providing connectivity to a wide range of SQL

databases, JDBC allows you to access other tabular data sources such as spreadsheets or flat
files. Although JDBC is often thought of as an acronym for Java Database Connectivity, the
trademarked API name is actually JDBC.

JDBC Drivers
The JDBC API contains two major sets of interfaces: the f irst is the JDBC API for application writers, and

the second is the lower-level JDBC driver API for driver writers. JDBC technology drivers fit into one of

four categories.

Application JDBC

API

Network

Interface

Database Server

D/B

Network

http://www.webopedia.com/TERM/J/database.html

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 13

Proprietary Database drivers:

Bridge drivers: The JDBC-ODBC Bridge driver is recommended only for experimental use or
when no other alternative is available.

DBMS-independent all-Java net-drivers: These are written in 100% Java and use vendor independent

Net-protocol to access a vendor independent remote listener.

1. A JDBC-ODBC BRIDGE provides JDBC API access via one or more ODBC drivers. Note that some
ODBC native code and in many cases native database client code must be loaded on each client
machine that uses this type of driver. Hence, this kind of driver is generally most appropriate
when automatic installation and downloading of a Java technology application is not important.

2. A NATIVE-API PARTLY JAVA
TECHNOLOGY-ENABLED DRIVER converts JDBC calls into calls on the client API for Oracle,
Sybase, Informix, DB2, or other DBMS. Note that, like the bridge driver, this style of driver
requires that some binary code be loaded on each client machine.

Java Application

DSN

Database

JDBC API

Bridge Driver

Driver

ODBC

JDBC-ODBC Bridge

Java Application

JDBC API

Native API Driver

Native API

Database Native-API Partly Java Driver

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 14

3. A NET-PROTOCOL FULLY JAVA TECHNOLOGY-ENABLED DRIVER translates JDBC API calls into a
DBMS-independent net protocol, which is then translated, to a DBMS protocol by a server. This
net server middleware is able to connect all of its Java technology-based clients to many
different databases. The specific protocol used depends on the vendor. In general, this is the
most flexible JDBC API alternative. It is likely that all vendors of this solution will provide
products suitable for Intranet use. In order for these products to also support Internet access
they must handle the additional requirements for security, access through firewalls, etc., that
the Web imposes. Several vendors are adding JDBC technology-based drivers to their existing
database middleware products.

4. A NATIVE-PROTOCOL FULLY JAVA TECHNOLOGY-ENABLED DRIVER converts JDBC technology
calls into the network protocol used by DBMSs directly. This allows a direct call from the client
machine to the DBMS server and is a practical solution for Intranet access. Since many of these
protocols are proprietary the database vendors themselves will be the primary source for this
style of driver. Several database vendors have these in progress.

Java Application

JDBC API

NET-Protocol Java

Enabled Driver

Middleware Component

Database

net common protocol

NET-Protocol Fully Java Enabled Driver

Java Application

JDBC API

Native Protocol Driver

Database

Native Protocol

Native-Protocol Fully Java Technology-Enabled Driver

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 15

Creating Connection

A JDBC application connects to a target data source using one of two mechanisms:

1. DriverManager: This fully implemented class requires an application to load a specific
driver, using a hardcoded URL. As part of its initialization, the DriverManager class

attempts to load the driver classes referenced in the jdbc.drivers system property. This
allows you to customize the JDBC Drivers used by your applications.

2. DataSource: This interface is preferred over DriverManager because it allows details

about the underlying data source to be transparent to your application. A DataSource
object's properties are set so that it represents a particular data source.

Establishing a connection involves two steps:

 Loading the driver
 Making the connection.

1. In order to connect to a database, JDBC driver has to be loaded by the Java Virtual
Machine classloader, and your application needs to check to see that the driver was

successfully loaded. Here we'll be using the ODBC bridge driver, but if your database
vendor supplies a JDBC driver, feel free to use it instead.

2. Once our driver is loaded, we can connect to the database. We'll connect via the
DriverManager class, which selects the appropriate driver for the database we specify.
In this case, we'll only be using an ODBC database, but in more complex applications,

we might wish to use different drivers to connect to multiple databases. We identify our
database through a URL.

i. A JDBC URL starts with "jdbc:" This indicates the protocol (JDBC). We also
specify our database in the URL. As an example, here's the URL for an ODBC
datasource called 'demo'.

ii. To connect to the database,

// load the JDBC driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// Create a URL that identifies database

String url = " jdbc:odbc:demo“;

// Now attempt to create a database connection

Connection db_conn =

 DriverManager.getConnection (url, "user", "password");

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 16

Building Statements

In JDBC, a Statement object is used to execute queries. A Statement object is responsible for

sending the SQL statement, and returning a set of results, if needed, from the query. Statement
objects support two main types of statements - an update statement that is normally used for
operations, which don't generate a response, and a query statement that returns data.

Once an instance of a statement object has been created, you can call its executeUpdate and

executeQuery methods. To illustrate the executeUpdate command, we'll create a table that
stores information about student. To keep things simple and limit it to name and student rollno.

Now that there's data in the table, we can execute queries. The response to a query will be returned by

the executeQuery method as a ResultSet object.

Handling Results

ResultSet objects store the last response to a query for a given statement object. Instances of
ResultSet have methods following the pattern of getXX where XX is the name of a data type.

Such data types include numbers (bytes, ints, shorts, longs, doubles, big-decimals), as well as
strings, booleans, timestamps and binary data.

// Create a statement to send SQL

Statement db_stmt = db_conn.createStatement();

// Create a simple table, which stores an employee ID and name

db_stmt.executeUpdate ("create table student (rollno number(4),
name varchar(50))");

// Insert an employee, so the table contains data

db_stmt.executeUpdate ("insert into student values (1, 'ABC’)");

// Commit changes

db_conn.commit();

// Execute query

ResultSet result = db_stmt.executeQuery

 ("select * from student");

// While more rows exist, print them

while (result.next())

{

 // Use the getInt method to obtain emp. id

 System.out.println ("ID : " + result.getInt("rollno"));

 // Use the getString method to obtain emp. name

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 17

How to Create Data Source Name (DSN)

Creating a new ODBC Data Source Name (DSN) is a straight-forward operation. Using the
OBDC Data Source Administrator, you can create User, System, and File DSNs as you need

them.

Data Source Name Categories

ODBC has three different categories or types of DSNs:

 User DSN
 System DSN
 File DSN

Each DSN category serves a specific purpose and has a specific scope.

User DSN

A user DSN is just that, a DSN for a specific user. If you create a user DSN under your user
account, no other user can see it or use it. The DSN is for me and me alone. If you need a

connection to a data source that only you should use, choose a user DSN.

System DSN

A system DSN is a DSN that is seen by the entire system. Any user can see it, as well as any
process or service. If you need a data source connection that should be seen more than just your
user account, choose to use a system DSN. This is especially true if you are trying to establish a

connection through IIS or some other service.

File DSN

A file DSN is simply where the connection settings are written to a file. The reason for having a
file DSN is if you want to distribute a data source connection to multiple users on different
systems without having to configure a DSN for each system. For instance, you can create a file

DSN to a reporting database on your desktop. you can then send the file to your users. your
users can save the file DSN to their hard drives and then point their reporting applications at the

file DSN.

Steps to Create a DSN:

 Click Start, point to Control Panel, double-click Administrative Tools, and then

double-click Data Sources(ODBC).

 Click the System DSN tab, and then click Add.

 Click the database driver that corresponds with the database type to which you are
connecting, and then click Finish.

 Type the data source name (e.g demo). Make sure that you choose a name that you can
remember. You will need to use this name later.

 Click Select.

 Click the correct database, and then click OK.

Bachelor of Computer Application (Java Programming and Dynamic
Webpage Design) BCA-S302T

Notes complied & edited by Ram Gopal Gupta (http://www.ramgopalgupta.com) Page 18

 Click OK, and then click OK.

Putting All Concepts together:

import java.sql.*;

class JdbcExample

{

public static void main(String args[]) throws Exception

{

 // load the JDBC driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// Create a URL that identifies database

String url = " jdbc:odbc:demo“;

 // Now attempt to create a database connection

Connection db_conn =

 DriverManager.getConnection (url, "user", "password");

// Create a statement to send SQL

Statement db_stmt = db_conn.createStatement();

// Create a simple table, which stores an employee ID and name

db_stmt.executeUpdate ("create table student (rollno number(4), name
varchar(50))");

// Insert an employee, so the table contains data

db_stmt.executeUpdate ("insert into student values (1, 'ABC’)");

// Commit changes

db_conn.commit();

// Execute query

ResultSet result = db_stmt.executeQuery

 ("select * from student");

// While more rows exist, print them

while (result.next())

{

 // Use the getInt method to obtain emp. id

 System.out.println ("ID : " + result.getInt("rollno"));

 // Use the getString method to obtain emp. name
 System.out.println ("Name : " + result.getString("name"));

 System.out.println ();

}

 result.close();

 db_stmt.close();

 db_conn.close();

 }

 }

